
This	
 work	
 was	
 performed	
 under	
 the	
 auspices	
 of	

the	
 U.S.	
 Department	
 of	
 Energy	
 by	
 Lawrence	

Livermore	
 Na?onal	
 Laboratory	
 under	
 Contract	
 DE-­‐
AC52-­‐07NA27344.	
 Lawrence	
 Livermore	
 Na?onal	

Security,	
 LLC Release Number:

Parallel Discrete Event
Simulation Course

#1

David Jefferson
Lawrence Livermore National Laboratory

2014

LLNL-PRES-648682

1 PDES Course Slides Lecture 1.key - February 25, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Overview

���2

2 PDES Course Slides Lecture 1.key - February 25, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2009

Simulation in General

���3

• Time!
• temporal coordinate axis -- simulation time plays a logical role!
• program mimics the evolution of the state of a physical system through time!

• Space!
• there may be a spatial coordinate system as well -- simulation space!
• but even without a coordinate system there is the “space” (namespace) of different simulation

objects!

• Spacetime!
• sometimes it is helpful to think in terms of simulation spacetime!

• State!
• state of the modeled system that varies in space and time according to rules!

• Event!
• local change in state at a particular location is space and at a particular time!
• “events” then occupy a single point in spacetime!

• Time and causality obey “Newtonian” semantics!
• time is global, 1-dimensional, and linear!
• causality only forward in time; no causality backward (and restricted sideways) in time!
• no upper bound on distance, velocity, or frequency of interaction!
• simulations must be deterministic and repeatable

▼! What does it mean for space and time to play a logical role!
! ▼! It is just as the stack discipline plays a logical role in a procedural program!
! •! SimTime is global, i.e. Newtonian!
! •! SimTime is read-only to the model code!
! ▼! Like the stack pointer in a procedural language, simulation time is not an ordinary variable!
! •! Stack pointer is controlled by the compiler or interpreter, and the procedural programmer cannot escape them or violate the discipline!
! •! SimTime controlled by the simulator runtime system (or compiler, interpreter, etc.) but model cannot escape SimTime discipline!
! ▼! Time and space coordinates are not under the complete control of the simulation programmer!
! •! They are controlled by the simulator, the simulation platform code!
! •! The simulation programmer cannot escape or violate their causal discipline!
! ▼! time is one dimensional and linearly ordered!
! •! no branching time or other exotic notion of time!
! •! sim time never decreases!
! ▼! sim time must be consistent with Newtonian causality in the model!
! •! no upper bound on the "velocity" of causal effects, although always finite!
! •! no causal behavior backward in time!
! ▼! sim time is virtually always numeric, with sum and difference operations defined!
! •! this is not actually required for simulation algorithms themselves--linear ordering is all that is required!
! •! but sums and differences are generally required for simulation models that run on them!
! •! simulation time is the synchronization standard used in a PDES (later extended to virtual time)!

3 PDES Course Slides Lecture 1.key - February 25, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Classification of Simulations

���4

Simulations

Continuous Discrete

Time-stepped Event-driven

Sequential Parallel Sequential Parallel

Conservative Optimistic

The circled categories are what we will study in this course.

4 PDES Course Slides Lecture 1.key - February 25, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2009

Discrete Event Simulation Applications

• DoD defense & combat models!
• strategic defense models!
• tactical and strategic combat models!

• Cyber defense!
• cybersecurity dynamics!

• DHS !
• transportation and traffic models!
• regional and national infrastructure models!

• Physics!
• particle systems!
• kinetic Monte Carlo models!

• Biology!
• epidemiological models!
• population dynamics!
• genetic models 

• Digital system!
• network communication — all technologies

and protocols!
• telephony!
• digital circuits !
• computer architecture!
• software performance modeling (e.g.

transaction systems)!

• Mathematics!
• queuing and other systems of stochastic

processes!
• birth-death processes!

• Others!
• agent models!
• logistical models!
• microeconomic models

�5

What are the objects in the simulation? What are their states? What are the events (state changes)?!"
Combat models!

! objects: units, ships, aircraft, tanks, weapons, communication devices, etc.!

! events: moving, sensing, firing, exploding, message transmission, etc.!

Transportation:!

! objects: vehicles!

! events: start on next segment (of road, or flight plan, etc.), arrive at end of segment, interact with another vehicle, crash, etc.!

Biology: !

! objects: organisms, resources, locations!

! events: movement/migration, mutation, birth, infections contact, death, etc.!

Network models:!

! objects: nodes, routers, switches!

! events: packet send, packet arrive, switching decision, routing decision, packet drop, etc.!

Economic models:!

! objects: humans, corporations (producers, consumers, brokers, banks, markets), gov’t agencies, etc.!

! events: financial transactions, demand requests, supply advertisements

5 PDES Course Slides Lecture 1.key - February 25, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2009

History of Discrete Event Simulation

• Origin of discrete event simulation concept and the
sequential algorithm for it is hazy!
• Early ideas late 1950s!
• No specific person is credited that I know of. !
• But then, who is credited with the idea of a runtime stack?!

• Dozens of programming languages designed specifically
for discrete event simulation!
• GASP, SimScript, GPSS, Simula I, Simula 67, ModSim, many others!
• Nance, Robert -- “History of Discrete Event Simulation Programming Languages”, SigPlan Notices,

V.28, No.3, March 1993!

• Contributions of discrete event simulation to computer
science:!
• coroutines!
• object-oriented programming (classes, instances, inheritance)!
• reverse computation (!)

���6

For reference on discrete event simulation programming language history see !"
Nance, Robert -- “History of Discrete Event Simulation Programming Languages”, SigPlan Notices, V. 28, No. 3, March 1993	

"
Coroutines!
! •! Besides event lists, a key invention introduced in Simula was the notion of a coroutines, a sequential symmetric context switching mechanism (as opposed to

subroutine, which is asymmetric and stack-oriented) that could be compiled at user level with no operating system support!
! •! Coroutines were reminiscent of process switching in time sharing systems, but application directed, not time sliced, and with no change in protection

domain. !
 • They are actually closer to mechanically to user level threads, but the distinction between processes and threads had not been made at the time!
! ! ! coroutines each have their own stack!
! ! ! coroutines are not preempted (as threads may be)!
! ! ! when coroutines give up control, it is not to a scheduler, but to another named coroutine (half as many context switches)!

6 PDES Course Slides Lecture 1.key - February 25, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Simula-67 is the origin of the Object-Oriented
Programming paradigm

Ole-Johan DahlKristen Nygaard

ACM Turing Award, 2001
Commander of the (Norwegian) Order of St. Olav, 2000

���7

It is commonly believed that object-oriented computing originated with Alan Kay and SmallTalk. Not true. While SmallTalk coined the term “object oriented” and
made O-O programming popular and more dynamic, the class concept (and the term) originated with Dahl and Nygaard a decade earlier with Simula-67.
Furthermore they extended the notion of object-orientedness to include scheduling using simulation time.!"
Both died in 2002.

7 PDES Course Slides Lecture 1.key - February 25, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Classification of Simulations

���8

Simulations

Continuous Discrete

Time-stepped Event-driven

Sequential Parallel Sequential Parallel

Conservative Optimistic

The circled categories are what we will study in this course.

8 PDES Course Slides Lecture 1.key - February 25, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Continuous vs. Discrete Simulation

���9

9 PDES Course Slides Lecture 1.key - February 25, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Continuous vs. discrete simulation

���10

Continuous Discrete

original form: system of ODEs or PDEs original form: state machines, particle
systems, graphs, stochastic processes, etc.

time, space, and state continuous time, space, and state either continuous or
discrete

state varies continuously in time and space;
occasional discontinuities

state changes mostly discontinuous; constant
or simple analytical changes between

generally not probabilistic; statistics plays no
role in a single run

frequently probabilistic (Monte Carlo);
statistics is key analytical tool

numerical methods central; numerical
analysis is key analytical tool

generally not numerical; numerical analysis
plays little role

generally implemented as synchronous,
SPMD, and conservative

generally implemented as asynchronous,
MPMD, and conservative or optimistic

Continuous and discrete simulation have much in common, so this table summarizes the contrasts. There are VERY FEW who are real experts in both continuous
and discrete simulation. !"
Why should we expect unification? Because either can approximate the other to an arbitrary degree of precision.!"
Mixed discrete and continuous systems:!
! fairly straightforward affair for mixed discrete and ODE-derived ! systems, but no one knows how to unify discrete and PDE-derived !
! systems!"
Grand challenge: fully unify the computational methods for discrete models and multidimensional continuous models. !"
I have long felt that the world could benefit from a unification of the two, but so far no one has stood up to accomplish it. If anyone here is deeply knowledgeable
about continuous simulation and wants to collaborate with me in a unification, let me know!!

10 PDES Course Slides Lecture 1.key - February 25, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Connection between continuous and discrete simulation?

���11

Simulations

Continuous Discrete

Time-stepped Event-driven

Sequential Parallel Sequential Parallel

Conservative Optimistic

discretization ???

Discretization of a continuous model is the transformation from equational form into a discrete model. Virtually always this is a time-stepped model. !"
Grand challenge: Develop techniques for transforming continuous models into discrete event models. No one knows how to do that in general, although there are
hints coming. Would solve the general problem of multiscale simulation, in time at least.

11 PDES Course Slides Lecture 1.key - February 25, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Time-stepped vs. Event-driven

���12

12 PDES Course Slides Lecture 1.key - February 25, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2009

Discrete time-stepped vs. discrete event
models

���13

• The fundamental difference is not:!
• integer time vs. continuous (floating point) time!
• discrete state space vs. continuous (floating point) state space!
• synchronous vs. asynchronous!

• The fundamental difference is:!
• time-stepped models: event times and locations are decided

statically (or quasi-statically)!
• event-driven models: event times and locations are dynamically

computed!
• no restrictions regarding locality or scale in time or space"
• one consequence: one-sided messaging preferred to two-sided

difference is analogous to other static vs. dynamic paradigms!
 arrays vs. strings or lists!
 static storage vs. stack or heap storage!"
With (quasi)static knowledge of the simtimes and communication patterns built-in to the code, it is possible for the receiving side of the code to know when and
how many messages to expect at a given point in the logic. Hence 2-sided messaging with explicit RECEIVE() primitives are appropriate.!"
But in PDES the simulator has no static knowledge of the communication pattern or the times at which an object will receive an event message, it is impossible to
know if or when a event message will arrive, or how many, so an explicit RECEIVE primitive is and any attempt to use two-sided message primitives requires
systematic use of polling.

13 PDES Course Slides Lecture 1.key - February 25, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Time-stepped vs. event-driven simulation

���14

time-stepped event-driven
event times statically chosen event times dynamically computed

communication patterns mostly static communication patterns dynamically
computed

simple implementation more complex implementation

static lower limit on time scale no lower limit on time scale; inherently
multiscale

events dense and regular in spacetime events sparse in spacetime

clumsy and inefficient to couple two time-
stepped simulations

easy and natural to couple two event-
driven simulations

parallel models generally SPMD with 2-
sided comm primitives

parallel models generally MPMD with 1-
sided comm primitives

appropriate for spatially and temporally
regular models

appropriate for irregular, asynchronous
models

▼	 time-stepped!	 	
" •" a key consequence is that there is a static limit to how fine a time scale is used in a simulation"
" ▼	 continuous simulations are discretized by transforming the continuum model (equation) into a discrete time-stepped simulation" 	 	
" •" AMR is an attempt to get around the limitations of that approach"
" ▼	 SPMD" 	 	
" •" parallel time-stepped simulations need not, but usually do, run the exact same algorithm at every spatial point and are SPMD"
▼	 event driven!	 	
" •" event-driven simulations the simtimes of events are calculated dynamically"
" •" also generally the event locations are computed dynamically; thus the communication pattern can be arbitraily irregular"
" •" in such a case there is no limit to how fine a time scale may evolve in a simulation"
" ▼	 in this respect, event-driven simulation is more general than time-stepped simulation as a paradigm" 	 	
" •" imagine how continuous simulation might change if equations were discretized as event-driven rather than time driven models!"
" •" AMR is a step in this direction, for the case when there is a spatial continuum as well"
" •" but no one has a full theory yet about how to do this right"
" ▼	 MPMD" 	 	
" •" event driven simulations usually have more than one type of object, and are MPMD

14 PDES Course Slides Lecture 1.key - February 25, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Sequential Discrete
Event Simulation

���15

15 PDES Course Slides Lecture 1.key - February 25, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2009

Sequential Discrete Event Simulation

���16

• simTime -- global real or integer (assume real)!
• global simulation time; read-only to model code!

• objects -- class instances (e.g. “objects” in OO sense)!
• represent discrete objects in the system being simulated!
• also called LPs (logical processes)!

• state -- the field values of an object!
• represents the physical state of the object being modeled!

• event -- execution of a method on an object at a simTime!
• represents a discontinuous change in one object’s state!

• eventNotice -- event (method call) scheduled for a future time!
• represents an event that will (or might) happen in the future!
• stored until the appropriate simulation time!

• eventList -- global priority queue of eventNotices!
• ordered by simTime!
• represents the currently known scheduled future events!
• events insert eventNotices into eventList (and in some paradigms, delete them)

The event list is analogous to the runtime stack of procedural programming language. It is a priority queue instead of a stack, but like the stack it organizes the
many method/event calls that make up the computation.

16 PDES Course Slides Lecture 1.key - February 25, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Sequential Discrete Event Simulation

���17

19.4

A

move

(3.2,4.5)

32.0

D

observe

(-2.1,-6.8)

20.951

C

observe

(3.2,12.4)

20.9

A

fire

()

19.6

B

turn

(L,45)

19.4

A B C D

simTime

eventList

objects

4 objects, A, B, C and D with their internal states!"
current simTime is 19.4!"
event list has 5 events scheduled in it!"
simTime is always the same as the lowest simTime event in the event list!"
event list is not really implemented as a linear list--it is a priority queue, generally a tree, i.e.!
! a heap, red-black tree, or (ideally) a splay tree!"
A is executing the move method at time 19.4

17 PDES Course Slides Lecture 1.key - February 25, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Sequential DES algorithm

���18

createInitialObjects();	
eventList.insert(initialEvents);	
"
while (! (terminationCondition() || eventList.empty())) do {	
	 	
 event e = eventList.removeMinSimTime(); // Choose next event	
"
 simTime = e.getEventTime(); // set simTime and unpack event	
 object = e.getEventObject();	
 method = e.getMethod();	
 args = e.getArgs();	
"
 object.method(args); // May change state of object	
 // May insert future events into eventList	
	 	 	 	 	 // May create or destroy objects	
 // May delete future event from eventList	
}"
"
finalize();

This is an object-oriented style of DES!"
We distinguish the simulator code from the simulation code!"
! Blue text is the simulation code--the model itself!
! Black text is the simulation algorithm itself--the platform!"
Besides initialization and termination issues, all of the work of the model code is in the object methods!
Assume no ties and no zero-delay in simTime!
! an event at time T can only schedule events at times strictly >T!
! no two events for the same object have the same simTime!
! ! but two events for different objects may have the same time!
! hence simTime strictly nondecreasing with every event!
Reasons for, refinements of, and consequences of these assumptions will come later!
! surprisingly complex, especially for parallel sim!
! must prepare the ground

18 PDES Course Slides Lecture 1.key - February 25, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Sequential Discrete Event Simulation

���19

19.4

A

move

(3.2,4.5)

32.0

D

observe

(-2.1,-6.8)

20.951

C

observe

(3.2,12.4)

20.9

A

fire

()

19.6

B

turn

(L,45)

19.4

A B C D

simTime

eventList

objects

4 objects, A, B, C and D with their internal states!"
current simTime is 19.4!"
event list has 5 events scheduled in it!"
simTime is always the same as the lowest simTime event in the event list!"
event list is not really implemented as a linear list--it is generally a tree, i.e.!
! a heap, red-black tree, or (ideally) splay tree!"
A is executing the move method

19 PDES Course Slides Lecture 1.key - February 25, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Sequential Discrete Event Simulation

���20

32.0

D

observe

(-2.1,-6.8)

20.951

C

observe

(3.2,12.4)

20.9

A

fire

()

19.6

B

turn

(L,45)

19.6

A

x

B C D

simTime

eventList

objects

The move method inserted no events into the eventList, so the next event is at time 19.6 for B!"
Note A’s state has changed

20 PDES Course Slides Lecture 1.key - February 25, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Sequential Discrete Event Simulation

���21

32.0

D

observe

(-2.1,-6.8)

20.951

C

observe

(3.2,12.4)

20.9

A

fire

()

19.8

B

turn

(L,45)

19.8

A

x

B

5

C D

simTime

eventList

objects

20.9507

D

observe

(-2.1,-6.8)

B’s state has changed, but note that B inserted two events into the event list.!"
One it happened to be for itself, and happened to be the very next event.!"
It also inserted an event for D !"
Hence and event for B runs next also.

21 PDES Course Slides Lecture 1.key - February 25, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Sequential Discrete Event Simulation

���22

32.0

D

observe

(-2.1,-6.8)

20.951

C

observe

(3.2,12.4)

20.9

A

fire

()

26.0

E

send

("msg")

20.9

A

x

B

5 9

C D

simTime

eventList

objects

20.9507

D

observe

(-2.1,-6.8)

E

B’s event caused a new object, E, to be created and also caused an event for E to be scheduled!"
That’s all there is to the core sequential algorithm! The main variations in this algorithm at the level we are talking about are in the data structures used for the
event list!!"
But efficiently parallelizing this algorithm is a very complex undertaking and requires a lot of parallel computation issues to be rethought from the ground up, as
we will see when we get to optimistic parallel algorithms.

22 PDES Course Slides Lecture 1.key - February 25, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2009

That’s all there is to the sequential DES
algorithm!

���23

• The most significant variations are in the
implementation of the priority queue for the event list.!

• This algorithm is optimal in both time and space!!

"

Efficient, scalable parallelization of this one simple
algorithm is what the rest of the course is about

23 PDES Course Slides Lecture 1.key - February 25, 2014

